Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.450
Filtrar
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 411-419, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597431

RESUMO

OBJECTIVE: To investigate the role of Rho/ROCK signaling pathway in mediating restraint stress-induced blood-brain barrier (BBB) injury in the amygdala of rats. METHODS: Sixty male SD rats were randomized equally into control group (with food and water deprivation for 6 h per day), restraint stress group (with restraint for 6 h per day), stress + fasudil treatment (administered by intraperitoneal injection at 1 mg/100 g 30 min before the 6-h restraint) group, and fasudil treatment alone group. The elevated plus-maze test was used to detect behavioral changes of the rats, serum corticosterone and S100B levels were determined with ELISA, and Evans Blue leakage in the brain tissue was examined to evaluate the changes in BBB permeability. The changes in expression levels of tight junction proteins in the amygdala were detected using immunofluorescence assay and Western blotting, and Rho/ROCK pathway activation was detected by Pull-down test and Western blotting. Ultrastructural changes of the cerebral microvascular endothelial cells were observed using transmission electron microscopy. RESULTS: Compared with those in the control group, the rats in restrain stress group and stress+fasudil group showed obvious anxiety-like behavior with significantly increased serum corticosterone level (P<0.001). Compared with those in the control group and stress+fasudil group, the rat models of restrain stress showed more obvious Evans Blue leakage and higher S100B expression (P<0.01) but lower expressions of tight junction proteins in the amygdala. Pull-down test and Western blotting confirmed that the expression levels of RhoA-GTP, ROCK2 and P-MLC 2 were significantly higher in stress group than in the control group and stress + fasudil group (P<0.05). Transmission electron microscopy revealed obvious ultrastructural changes in the cerebral microvascular endothelial cells in the rat models of restrain stress. CONCLUSION: Restraint stress induces BBB injury in the amygdala of rats by activating the Rho/ROCK signaling pathway.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Barreira Hematoencefálica , Células Endoteliais , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , Ratos Sprague-Dawley , Azul Evans/metabolismo , Corticosterona/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo
2.
Neurosurg Rev ; 47(1): 113, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472507

RESUMO

Subarachnoid hemorrhage often leads to poor outcomes owing to vasospasm, even after successful aneurysm treatment. Clazosentan, an endothelin receptor inhibitor, has been proven to be an effective treatment for vasospasms in a Japanese randomized controlled trial. However, its efficacy in older patients (≥ 75 years old) and those with World Federation of Neurosurgical Societies (WFNS) grade V has not been demonstrated. We retrospectively evaluated the efficacy of clazosentan in older patients and those with WFNS grade V, using real-world data. Patients with subarachnoid hemorrhage treated before and after the introduction of clazosentan were retrospectively evaluated. The patients were categorized into two groups (clazosentan era versus pre-clazosentan era), in which vasospasm management and outcomes were compared. Vasospasms were managed with fasudil hydrochloride-based (pre-clazosentan era) or clazosentan-based treatment (clazosentan era). Seventy-eight patients were included in this study: the clazosentan era (n = 32) and pre-clazosentan era (n = 46). Overall, clazosentan significantly reduced clinical vasospasms (clazosentan era: 31.3% versus pre-clazosentan era: 60.9%, p = 0.01), delayed cerebral ischemia (DCI) (9.4% versus 39.1%, p = 0.004), and vasospasm-related morbidity and mortality (M/M) (3.1% versus 19.6%, p = 0.03). In subgroup analysis of older patients or those with WFNS grade V, no significant difference was observed in clinical outcomes, although both DCI and vasospasm-related M/M were lower in the clazosentan era. Clazosentan was more effective than fasudil-based management in preventing DCI and reducing vasospasm-related M/M. Clazosentan could be used safely in older patients and those with WFNS grade V, although clinical outcomes in these patients were comparable to those of conventional treatment.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Dioxanos , Piridinas , Pirimidinas , Hemorragia Subaracnóidea , Sulfonamidas , Tetrazóis , Vasoespasmo Intracraniano , Humanos , Idoso , Hemorragia Subaracnóidea/cirurgia , Japão , Estudos Retrospectivos , Vasoespasmo Intracraniano/tratamento farmacológico , Resultado do Tratamento , Infarto Cerebral
3.
Neurochem Int ; 174: 105679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309665

RESUMO

Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Síndrome de Down , Humanos , Camundongos , Animais , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Síndrome de Down/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
CNS Drugs ; 38(4): 291-302, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38416402

RESUMO

BACKGROUND: The intravenous (IV) formulation of Rho-kinase (ROCK) inhibitor fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995. Additionally, fasudil has shown promising preclinical results for various chronic diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis, Parkinson's disease, and dementia, in which long-term intravenous (IV) administration might not be suitable. OBJECTIVE: The objective of this study was to assess the absolute bioavailability of oral, in comparison to IV, application of the approved formulation of fasudil (ERIL®) and to evaluate the safety and tolerability of the oral application of fasudil. METHODS: This was a phase I, single-center, open-label, randomized, two period cross-over clinical trial in healthy women and men. By applying a cross-over design, each subject served as their own control. Two treatments were investigated, separated by a wash out phase of at least 3 days. Oral fasudil was administered once on day 1 to assess pharmacokinetics and three times on day 2, at an interval of 8 ± 1 h, to assess safety and gastrointestinal tolerability. For pharmacometrics of IV fasudil, it was administered once on day 1. Plasma profiles of fasudil and its active metabolite hydroxyfasudil after oral or IV administration were measured by liquid chromatography electrospray tandem mass spectrometry. Tolerability was assessed as proportion of subjects without significant drug intolerance, and safety was assessed by the proportion of subjects without clinical or laboratory treatment-associated serious adverse events. Gastrointestinal safety was assessed by applying the gastrointestinal symptom rating scale (GSRS). RESULTS: Fourteen subjects aged 30-70 years were included in this trial. After oral administration, fasudil concentrations in blood were mostly very low [1.4 g/L; coefficient of variation (CV) 41.0%]. After IV application, the peak concentration was 100.6 µg/L (CV 74.2%); however, a high variance in peak concentrations were assessed for both treatments. The maximal concentrations of hydroxyfasudil in blood were similar after oral and IV treatment [111.6 µg/L (CV 24.1%) and 108.4 µg/L (CV 19.7%), respectively]. Exposure of hydroxyfasudil (assessed as AUC0-tz) differed between both treatments, with 449 µg × h/L after IV treatment and 309 µg × h/L after oral treatment. Therefore, the absolute bioavailability of hydroxyfasudil after the oral treatment was approximately 69% of the IV treatment. No serious adverse events (SAEs) occurred during this trial, and good tolerability of oral fasudil (90 mg/day) was documented. CONCLUSIONS: Oral fasudil was generally well tolerated in the studied population, and no safety concerns were identified. However, systemic bioavailability of oral hydroxyfasudil corresponded to 69%, and dose adjustments need to considered. The results presented here lay grounds for future trials of fasudil in chronic diseases, which require an oral long-term application. This trial was registered with EudraCT (no. 2019-001805-26).


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Inibidores de Proteínas Quinases , Quinases Associadas a rho , Masculino , Humanos , Feminino , Disponibilidade Biológica , Voluntários Saudáveis , Inibidores de Proteínas Quinases/efeitos adversos , Doença Crônica , Administração Oral
5.
Pharmacol Res ; 200: 107082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280440

RESUMO

Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Proteínas Hedgehog , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB , Proteína Gli2 com Dedos de Zinco , Proteínas Nucleares
6.
Cell Biol Int ; 48(3): 369-377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225667

RESUMO

Dental pulp cells play a crucial role in maintaining the balance of the pulp tissue. They actively respond to bacterial inflammation by producing proinflammatory cytokines, particularly interleukin-6 (IL-6). While many cell types release adenosine triphosphate (ATP) in response to various stimuli, the mechanisms and significance of ATP release in dental pulp cells under inflammatory conditions are not well understood. This study aimed to investigate ATP release and its relationship with IL-6 during the inflammatory response in immortalized human dental pulp stem cells (hDPSC-K4DT) following lipopolysaccharide (LPS) stimulation. We found that hDPSC-K4DT cells released ATP extracellularly when exposed to LPS concentrations above 10 µg/mL. ATP release was exclusively attenuated by N-ethylmaleimide, whereas other inhibitors, including clodronic acid (a vesicular nucleotide transporter inhibitor), probenecid (a selective pannexin-1 channel inhibitor), meclofenamic acid (a selective connexin 43 inhibitor), suramin (a nonspecific P2 receptor inhibitor), and KN-62 (a specific P2X7 antagonist), did not exhibit any effect. Additionally, LPS increased IL-6 mRNA expression, which was mitigated by the ATPase apyrase enzyme, N-ethylmaleimide, and suramin, but not by KN-62. Moreover, exogenous ATP induced IL-6 mRNA expression, whereas ATPase apyrase, N-ethylmaleimide, and suramin, but not KN-62, diminished ATP-induced IL-6 mRNA expression. Overall, our findings suggest that LPS-induced ATP release stimulates the IL-6 pathway through P2-purinoceptor, indicating that ATP may function as an anti-inflammatory signal, contributing to the maintenance of dental pulp homeostasis.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Trifosfato de Adenosina , Interleucina-6 , Humanos , Trifosfato de Adenosina/metabolismo , Lipopolissacarídeos/farmacologia , Etilmaleimida , Suramina/farmacologia , Apirase , Polpa Dentária/metabolismo , RNA Mensageiro/genética , Adenosina Trifosfatases , Receptores Purinérgicos
7.
Drug Des Devel Ther ; 18: 97-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38264539

RESUMO

The cornea, as the outermost layer of the eye, plays a crucial role in vision by focusing light onto the retina. Various diseases and injuries can compromise its clarity, leading to impaired vision. This review aims to provide a thorough overview of the pharmacological properties, therapeutic potential and associated risks of Rho-associated protein kinase (ROCK) inhibitors in the management of corneal diseases. The article focuses on four key ROCK inhibitors: Y-27632, fasudil, ripasudil, and netarsudil, providing a comparative examination. Studies supporting the use of ROCK inhibitors highlight their efficacy across diverse corneal conditions. In Fuchs' endothelial corneal dystrophy, studies on the application of Y-27632, ripasudil, and netarsudil demonstrated noteworthy enhancements in corneal clarity, endothelial cell density, and visual acuity. In pseudophakic bullous keratopathy, the injection of Y-27632 together with cultured corneal endothelial cells into the anterior chamber lead to enhanced corneal endothelial cell density and improved visual acuity. Animal models simulating chemical injury to the cornea showed a reduction of neovascularization and epithelial defects after application of fasudil and in a case of iridocorneal endothelial syndrome netarsudil improved corneal edema. Addressing safety considerations, netarsudil and ripasudil, both clinically approved, exhibit adverse events such as conjunctival hyperemia, conjunctival hemorrhage, cornea verticillata, conjunctivitis, and blepharitis. Monitoring patients during treatment becomes crucial to balancing the potential therapeutic benefits with these associated risks. In conclusion, ROCK inhibitors, particularly netarsudil and ripasudil, offer promise in managing corneal diseases. The comparative analysis of their pharmacological properties and studies supporting their efficacy underscore their potential therapeutic significance. However, ongoing research is paramount to comprehensively understand their safety profiles and long-term outcomes in diverse corneal conditions, guiding their optimal application in clinical practice.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina , Amidas , Benzoatos , Doenças da Córnea , Isoquinolinas , Piridinas , Sulfonamidas , beta-Alanina , Quinases Associadas a rho , Animais , Humanos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , beta-Alanina/análogos & derivados , Células Endoteliais
8.
Alcohol ; 115: 5-12, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37481044

RESUMO

Astrocytes are an important regulator of alcohol dependence. Furthermore, the downregulation of Rho-associated coiled coil-containing protein kinase 2 (ROCK2) attenuates alcohol-induced inflammation and oxidative stress in astrocytes. On the basis of these findings, we examined the effects of alcohol and a Rho/RACK kinases inhibitor on astrocyte function and investigated their effects on mRNA expression to further explore the protective mechanisms of a Rho/RACK kinases inhibitor in astrocytes after alcohol exposure. CTX TNA2 astrocytes were cultured with alcohol and Rho/RACK kinases inhibitor intervention before undergoing transcriptome sequencing, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and wound healing assays. Alcohol exposure modulated cell morphology and inhibited astrocyte migration, whereas Fasudil improved cell morphology and promoted astrocyte migration after alcohol exposure. Transcriptome sequencing results indicated that alcohol exposure modulates the expression of genes involved in astrocyte development. Fasudil reversed the effects of alcohol exposure on the astrocyte developmental process. Four genes related to the developmental process and migration - Ccl2, Postn, Itga8, and Serpine1 - with the highest protein-protein interaction correlations (node degree >7) were selected for verification by qRT-PCR, and the results were consistent with those of the sequencing and wound healing assays. Our results suggest that the Rho/ROCK pathway is essential for alcohol to be able to interfere with astrocyte development and migration gene expression. The Rho/ROCK pathway inhibitor Fasudil reversed the adverse effects of alcohol exposure on astrocytes and may have clinical applications.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Astrócitos , Inibidores de Proteínas Quinases , Astrócitos/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Etanol/farmacologia
9.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6434-6441, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212001

RESUMO

This study aimed to investigate the effect and underlying mechanism of Poria cocos polysaccharides(PCP) on myocardial cell apoptosis in the rat model of myocardial ischemia-reperfusion injury(MI/RI). Male SPF-grade SD rats were randomly divided into a sham group(saline), a model group(saline), low-and high-dose PCP groups(100 and 200 mg·kg~(-1)), and a fasudil group(10 mg·kg~(-1)), with 16 rats in each group. Except for the sham group, the other four groups underwent left anterior descending coronary artery ligation for 30 min followed by reperfusion for 2 h to establish the MI/RI model. The myocardial infarct area was assessed by TTC staining. Histological changes were observed through HE staining. Myocardial cell apoptosis was evaluated using TUNEL staining. Serum lactate dehydrogenase(LDH), creatine kinase MB(CK-MB), interleukin-1ß(IL-1ß) and IL-18 levels, myocardial superoxide dismutase(SOD) activity and malondialdehyde(MDA) levels were detected by ELISA. Protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2 associated X protein(Bax), cleaved caspase-3, Ras homolog gene A(RhoA), myosin phosphatase target subunit 1(MYPT-1), phosphorylated MYPT-1(p-MYPT-1), and Rho-associated coiled-coil forming kinase 1(ROCK 1) were measured by Western blot. Pathological staining of myocardial tissue revealed that in the model group, there was focal necrosis of myocardial tissue, myocardial cell swelling, unclear boundaries, and neutrophil infiltration. These pathological changes were alleviated in the low-and high-dose PCP groups and the fasudil group. Compared with the model group, the low-and high-dose PCP groups and the fasudil group showed significantly reduced myocardial infarct area and myocardial cell apoptosis rate. Compared with the sham group, the model group exhibited elevated serum LDH, CK-MB, IL-1ß and IL-18 levels, increased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and decreased myocardial SOD levels and Bcl-2 protein expression. Compared with the model group, the PCP groups and the fasudil group showed lowered serum LDH, CK-MB, IL-1ß and IL-18 levels, decreased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and increased myocardial SOD levels and Bcl-2 protein expression. PCP exhibited a certain preventive effect on myocardial tissue pathological damage and myocardial cell apoptosis in MI/RI rats, possibly related to the inhibition of the Rho-ROCK signaling pathway activation, thereby reducing oxidative stress and inflammatory responses.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Wolfiporia , Ratos , Masculino , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína X Associada a bcl-2/metabolismo , Ratos Sprague-Dawley , Caspase 3/metabolismo , Interleucina-18 , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Creatina Quinase Forma MB , Apoptose , Polissacarídeos/farmacologia , Superóxido Dismutase/metabolismo
10.
Biochemistry (Mosc) ; 87(9): 932-939, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180989

RESUMO

The autotransporter AT877 from Psychrobacter cryohalolentis belongs to the family of outer membrane proteins containing N-terminal passenger and C-terminal translocator domains that form the basis for the design of display systems on the surface of bacterial cells. It was shown in our previous study that the passenger domain of AT877 can be replaced by the cold-active esterase EstPc or the tenth domain of fibronectin type III (10Fn3). In order to increase efficiency of the 10Fn3 surface display in Escherichia coli cells, four deletion variants of the Fn877 hybrid autotransporter were obtained. It was demonstrated that all variants are present in the membrane of bacterial cells and facilitate binding of the antibodies specific against 10Fn3 on the cell surface. The highest level of binding is provided by the variants Δ239 and Δ310, containing four and seven beta-strands out of twelve that comprise the structure of the translocator domain. Using electrophoresis under semi-native conditions, presence of heat modifiability in the full-size Fn877 and its deletion variants was demonstrated, which indicated preservation of beta structure in their molecules. The obtained results could be used to optimize the bacterial display systems of 10Fn3, as well as of other heterologous passenger domains.


Assuntos
Escherichia coli , Sistemas de Secreção Tipo V , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/metabolismo , Fibronectinas/metabolismo , Proteínas de Membrana/metabolismo , Psychrobacter , Sistemas de Secreção Tipo V/metabolismo
11.
Aging (Albany NY) ; 14(18): 7378-7389, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36126209

RESUMO

OBJECTIVE: To explore the effect of Fasudil on HA spasm and its underlying mechanism. METHODS: Rabbits were divided into Sham, Fasudil, and Model groups for experiments. Fasudil was injected into the left medial lobe of the rabbit liver using a 16G lumbar puncture needle through the laparotomic route. The spasm model was established by inserting the catheter sheath into the femoral arteries of rabbits, followed by celiac artery angiography and left HA catheterization with a micro-catheter. Next, the GSE60887 and GSE37924 datasets concerning Fasudil treatment were analyzed. Moreover, immunofluorescence staining was conducted for YAP1 and α-SMA. Finally, Western blotting was performed to examine the expressions of YAP1, ROCK, ERK1/2, ETA, and ETB. RESULTS: Fasudil could relieve HA spasm. The Go and KEGG pathway analyses revealed that the MAPK signaling pathway and the Hippo signaling pathway were enriched in vasospasm. Besides, GSEA revealed that ROCK was functionally enriched in the MAPK and Hippo signaling pathways. Co-expression analysis revealed that MAPK1 was significantly correlated with YAP1 and MYC, and YAP1 was significantly correlated with ETA and ETB. It was manifested in the results of immunofluorescence staining that the YAP1-positive fluorescence area was significantly decreased after Fasudil treatment. Moreover, Western blotting results showed that Fasudil decreased the expressions of YAP1, RhoA, ROCK, ETA, ETB, and p-ERK1/2. In addition, in-vitro Western blotting revealed that Fasudil suppressed the YAP/ERK/ETA/ETB signaling pathway in the case of HA spasm by inhibiting ROCK activation. CONCLUSIONS: Fasudil ameliorates HA spasm through suppressing the YAP/ERK/ETA/ETB signaling pathway and the ROCK activation.


Assuntos
Artéria Hepática , Transdução de Sinais , Animais , Coelhos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Fígado , Espasmo
12.
ACS Appl Mater Interfaces ; 14(38): 42976-42987, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103264

RESUMO

Local stimuli differentiate monocytes into M2-like macrophages that mechanistically drive the pathologies in cancer and age-related macular degeneration (AMD). A photo-controlled nanodrug that halts macrophage polarization through Rho-associated kinase (ROCK) inhibition was developed. A small-molecule ROCK inhibitor, fasudil, was conjugated to a photo-responsive group and a short poly(ethylene glycol) (PEG) chain. This resulted in the novel amphiphilic prodrug, PEG-2-(4'-(di(prop-2-yn-1-yl)amino)-4-nitro-[1,1'-biphenyl]-yl)propan-1-ol (PANBP)-Fasudil, that spontaneously formed micelles. Ultraviolet (UV) irradiation of PEG-PANBP-Fasudil nanoparticles rapidly released fasudil. For visualization of linker degradation, a reporter nanoprobe was synthesized, in which 2-Me-4-OMe TokyoGreen (TG), a fluorophore that does not fluoresce in conjugation, was incorporated. Irradiation of nanoprobe-laden monocytes activated the reporter fluorophore. Cytokine stimulation differentiated monocytes into macrophages, while UV irradiation prevented polarization of PEG-PANBP-Fasudil nanoparticle-laden monocytes. Nanoarchitectonics-based design opens new possibilities for intracellular drug delivery and precise spatiotemporal immune cell modulation toward the development of new therapies.


Assuntos
Pró-Fármacos , Quinases Associadas a rho , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Citocinas/metabolismo , Liberação Controlada de Fármacos , Mercaptoetanol , Micelas , Polietilenoglicóis/metabolismo
13.
Curr Pharm Des ; 28(29): 2426-2435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909282

RESUMO

BACKGROUND: The clinical utility of Adriamycin (ADR) is limited due to its toxicity, particularly cardiotoxicity. Therefore, effective cardioprotective adjuvants to minimize ADR-induced acute cardiotoxicity are urgently needed. Our previous studies have demonstrated the protective roles of fasudil on tissue injury. Here, we further explore whether inhibition of Rho-kinase could alleviate the acute heart injury induced by ADR. METHODS: C57BL6 mice were randomly divided into the following four groups: ① ADR group; ② low-dose fasudil (ADR+L); ③ high-dose fasudil (ADR+H); and ④ control group (CON). Animals were injected i.p 20 mg/kg ADR once in group ①~③. Animals were injected i.p fasudil (2 or 10 mg/kg/day) daily for consecutive 6 days in groups ② and ③, respectively. Blood samples and heart tissues were collected for assays. H9C2 cells were treated with fasudil for 30 mins and then incubated with ADR for 24 hours. Cells were collected for immunohistochemistry and western blot study, respectively. RESULTS: In the mouse model, administration of fasudil significantly ameliorated ADR-induced cardiac damage, suppressed cell apoptosis and senescence, and ameliorated redox imbalance and DNA damage. In vitro, fasudil treatment ameliorated ADR-induced immunofluorescence reaction of 8-OHdG, decreased the expression of TUNEL cells and proteins of Bax, Caspase-3 and p53, and increased the expression of proteins of Bcl-2 and SIRT 1. CONCLUSION: Fasudil has a protective effect on ADR induced acute cardiotoxicity, which is partially attributed to its antioxidant, anti-senescence, and anti-apoptotic effects.


Assuntos
Traumatismos Cardíacos , Sirtuínas , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Animais , Antioxidantes/farmacologia , Apoptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Caspase 3/metabolismo , Caspase 3/farmacologia , Senescência Celular , Doxorrubicina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sirtuínas/metabolismo , Sirtuínas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Quinases Associadas a rho
14.
Eur J Pharmacol ; 931: 175207, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987254

RESUMO

Current antipsychotics used to treat schizophrenia have associated problems, including serious side effects and treatment resistance. We recently identified a significant association of schizophrenia with exonic copy number variations in the Rho GTPase activating protein 10 (ARHGAP10) gene using genome-wide analysis. ARHGAP10 encodes a RhoGAP superfamily member that is involved in small GTPase signaling. In mice, Arhgap10 gene variations result in RhoA/Rho-kinase pathway activation. We evaluated the pharmacokinetics of fasudil and hydroxyfasudil using liquid chromatography-tandem mass spectrometry in mice. The antipsychotic effects of fasudil on hyperlocomotion, social interaction deficits, prepulse inhibition deficits, and novel object recognition deficits were also investigated in a MK-801-treated pharmacological mouse schizophrenia model. Fasudil and its major metabolite, hydroxyfasudil, were detected in the brain at concentrations above their respective Ki values for Rho-kinase after intraperitoneal injection of 10 mg kg-1 fasudil. Fasudil improved the hyperlocomotion, social interaction deficits, prepulse inhibition deficits, and novel object recognition deficits in MK-801-treated mice in a dose-dependent manner. Following oral administration of fasudil, brain hydroxyfasudil was detected at concentration above the Ki value for Rho-kinase whilst fasudil was undetectable. MK-801-induced hyperlocomotion was also improved by oral fasudil administration. These results suggest that fasudil has antipsychotic-like effects on the MK-801-treated pharmacological mouse schizophrenia model. There are two isoforms in Rho-kinase, and further investigation is needed to clarify the isoforms involved in the antipsychotic-like effects of fasudil in the MK-801-treated mouse schizophrenia model.


Assuntos
Antipsicóticos , Esquizofrenia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Esquizofrenia/tratamento farmacológico , Quinases Associadas a rho
15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(7): 625-631, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35786457

RESUMO

Objective To investigate the effect of Fasudil on H2O2-induced apoptosis and synaptic plasticity in human neuroblastoma SY5Y cells and its mechanism. Methods The cells were divided into three groups: PBS control group, H2O2 model group (250 µmol/L H2O2 treatment) and Fasudil intervention group (250 µmol/L H2O2 combined with 15 µg/mL Fasudil treatment). MTT assay was applied to detect cell activity and TUNEL was performed to detect cell apoptosis respectively. Immunofluorescence cytochemical staining was used to determine the expression of neurite outgrowth inhibitor A (NogoA), Nogo receptor (NgR) and synaptophysin (Syn). Western blotting was then conducted to detect the expression of NogoA, NgR, p75 neurotrophin receptor (p75NTR), leucine-rich repeat Ig domain-containing Nogo-interacting protein 1 (LINGO-1), Syn and postsynaptic density protein-95 (PSD-95). Results Compared with the PBS group, the H2O2 group showed decreased cell viability and increased apoptosis rate while Fasudil treatment significantly increased the cell viability and reduced the apoptosis rate. Compared with the H2O2 model group, Fasudil intervention increased expressions of Syn and PSD-95. Compared with the PBS group, the expression of NogoA and its receptor complex NgR/p75NTR/LINGO-1 grew significantly in the H2O2 group, suggesting Fasudil treatment could inhibit the expression of NogoA and its receptor complex NgR/p75NTR/LINGO-1. Conclusion Fasudil may inhibit the activation of the NogoA/NgR signaling pathway, therefore reducing the apoptosis induced by H2O2 in SH-SY5Y cells and enhancing the plasticity of the synapses.


Assuntos
Neuroblastoma , Receptores Nogo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Apoptose , Humanos , Peróxido de Hidrogênio/farmacologia , Crescimento Neuronal , Plasticidade Neuronal , Receptor Nogo 1 , Receptor de Fator de Crescimento Neural , Transdução de Sinais
16.
Asian Cardiovasc Thorac Ann ; 30(8): 894-905, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35837687

RESUMO

BACKGROUND: It remains unclear whether the Rho-kinase (ROCK) inhibition in combination with mechanical circulatory support (MCS) had a synergic protective effect on myocardial ischemia (MI)/reperfusion injury in therapeutic strategies for acute myocardial infarction (AMI). We report the results of an approach using a rat model consisting of a miniaturized cardiopulmonary bypass (CPB) and AMI. METHODS: A total of 25 male Wistar rats were randomized into 5 groups: (1) Sham: a suture was passed under the left anterior descending artery (LAD) creating no MI. A vehicle solution (0.9% saline) was injected intraperitoneally. (2) Myocardial ischemia (MI) + vehicle (MI + V): LAD was ligated for 30 min and reperfused for 120 min, followed by administration of vehicle solution. (3) MI + fasudil (MI + F): the work sequence of group 2, but the selective ROCK inhibitor fasudil (10 mg/kg) was administered instead. (4) MI + V + CPB: CPB was initiated 15 min after the ligation of the LAD to the end of the reperfusion, in addition to the work sequence in group 2. (5) In the MI + F + CPB group, the work sequence of group 4, but with fasudil administration (10 mg/kg). RESULTS: Measurements of cardiac function through conductance catheter indicated that the drop of + dP/dt after reperfusion was moderately limited in MI + F + CPB (vs. MI + V, dP/dt p = 0.22). The preload recruitable stroke work was moderately improved in the MI + F + CPB (p = 0.23) compared with the corresponding control animals (MI + V). Phosphorylated protein kinase B expression in the MI + V + CPB and MI + F + CPB was higher than that in MI + V (p = 0.33). CONCLUSION: Therefore, fasudil administration with MCS resulted in a moderately better left ventricular performance.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Animais , Humanos , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Solução Salina/uso terapêutico , Resultado do Tratamento , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/uso terapêutico
17.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 64-72, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35818270

RESUMO

Cardiovascular diseases are very harmful to human life and health. Reperfusion therapy is a standard method to treat cardiovascular diseases and has achieved high clinical effects. However, this treatment method is likely to cause myocardial ischemia-reperfusion injury. It has been reported that the Rho kinase inhibitor fasudil can interfere with cardiomyocyte apoptosis through the Rho-ROCK signaling pathway, so it is often used to treat cardiovascular diseases. The essay aims to research this specific influence of fasudil on cardiac damage in myocardial ischemia-reperfusion mouses through the Rho-ROCK signal path and its related mechanisms. Forty rats were taken as the research object, and the mouses were separated into control clusters. In the observation cluster of fasudil, the rat heart device was perfused by surgery. The rat coronary artery was ligated for 20 minutes to make the rat myocardial ischemia. Then, the ligation was loosened for myocardial perfusion to create a rat myocardial ischemia-reperfusion model. Observation group rats were perfused with quantitative fasudil, 80 minutes after ischemia-reperfusion, the ultrastructural changes and myocardial ischemic area of the rat myocardium were observed under a microscope, and the dynamic changes of the mouse heart were examined by flow cytometry. The PCR fluorescence method was used to explore the outlook layer of Rho-ROCK kinase activity to detect rat cardiomyocyte apoptosis. It is shown that under this intervention of fasudil, this expression level of Rho-ROCK kinase activity in the observation group was reduced by 18.3%, the myocardial cell apoptosis rate was decreased by 26.4%, and one area of myocardial ischemia can be reduced by 32.5%. The ultrastructure of the new object in rats is improved, and the left ventricular diastolic and systolic effect is enhanced. Therefore, the fasudil may decrease cardiac ischemia and focus on injured Rho-ROCK signal path activity.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Animais , Humanos , Isquemia , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Ratos Sprague-Dawley , Reperfusão , Transdução de Sinais , Quinases Associadas a rho/metabolismo
18.
Fluids Barriers CNS ; 19(1): 43, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659272

RESUMO

BACKGROUND: Cerebral infarction accounts for 85% of all stroke cases. Even in an era of rapid and effective recanalization using an intravascular approach, the majority of patients have poor functional outcomes. Thus, there is an urgent need for the development of therapeutic agents to treat acute ischemic stroke. We evaluated the effect of fasudil, a Rho kinase inhibitor, on blood brain barrier (BBB) functions under normoxia or oxygen-glucose deprivation (OGD) conditions using a primary cell-based in vitro BBB model. METHODS: BBB models from rat primary cultures (brain capillary endothelial cells, astrocytes, and pericytes) were subjected to either normoxia or 6 h OGD/24 h reoxygenation. To assess the effects of fasudil on BBB functions, we evaluated real time impedance, transendothelial electrical resistance (TEER), sodium fluorescein permeability, and tight junction protein expression using western blotting. Lastly, to understand the observed protective mechanism on BBB functions by fasudil we examined the role of cyclooxygenase-2 and thromboxane A2 receptor agonist U-46619 in BBB-forming cells. RESULTS: We found that treatment with 0.3-30 µM of fasudil increased cellular impedance. Fasudil enhanced barrier properties in a concentration-dependent manner, as measured by an increased (TEER) and decreased permeability. Fasudil also increased the expression of tight junction protein claudin-5. Reductions in TEER and increased permeability were observed after OGD/reoxygenation exposure in mono- and co-culture models. The improvement in BBB integrity by fasudil was confirmed in both of the models, but was significantly higher in the co-culture than in the monoculture model. Treatment with U-46619 did not show significant changes in TEER in the monoculture model, whereas it showed a significant reduction in TEER in the co-culture model. Fasudil significantly improved the U-46619-induced TEER reduction in the co-culture models. Pericytes and astrocytes have opposite effects on endothelial cells and may contribute to endothelial injury in hyperacute ischemic stroke. Overall, fasudil protects the integrity of BBB both by a direct protective effect on endothelial cells and by a pathway mediated via pericytes and astrocytes. CONCLUSIONS: Our findings suggest that fasudil is a BBB-protective agent against acute ischemic stroke.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Glucose , Humanos , Ratos , Proteínas de Junções Íntimas/metabolismo
19.
Sci Rep ; 12(1): 6625, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459923

RESUMO

Alzheimer's disease (AD) is the most common cause of progressive dementia. In the present study, we showed hippocampal tissue transcriptome analysis in APPswe/PSEN1dE9 (APP/PS1, AD model) mice treated with fasudil (ADF) and compared with AD mice treated with saline (ADNS) and wild type mice (WT). The competing endogenous RNA (ceRNA) network was constructed and validated the differential expression of mRNA, lncRNA, miRNA, and circRNA. Our study showed differentially expressed mRNAs (DEMs) between WT and ADNS, while enriched in cell growth and death and nervous system pathways. DEMs between ADNS-ADF were enriched in the nervous system, glycosaminoglycan biosynthesis-keratan sulfate (KS) and Quorum sensing pathways. We validated four genes with RT-PCR, whereas enrichment of Acyl-CoA Synthetase Long Chain Family Member 4 (Acsl4, ENSMUST00000112903) in Quorum sensing pathways, and BTG anti-proliferation factor 1 (Btg1, ENSMUST00000038377) in RNA degradation pathways were conducted. Expression of these two genes were higher in ADNS, but were significantly reduced in ADF. Histone H4 transcription factor (Hinfp, ENSMUST00000216508) orchestrate G1/S transition of mitotic cell cycle and co-expressed with mmu-miR-26a-2-3p-mediated ceRNA and mmu-miR-3065-5p-mediated ceRNA; Wnt family member 4 (Wnt4, ENSMUST00000045747) was enriched in mTOR, Hippo and Wnt signaling pathway. Expression of these two genes were significantly lower in ADNS, and fasudil treatment reverse it. The present studies demonstrated four genes: Acsl4, Btg1, Hinfp, Wnt4 could be potential biomarkers of AD and the targets of fasudil treatment. These results will pave a novel direction for future clinic studies for AD and fasudil treatment.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina , Doença de Alzheimer , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , Transcriptoma
20.
BMC Pharmacol Toxicol ; 23(1): 24, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428330

RESUMO

BACKGROUND: Inflammation plays a major role in the pulmonary artery hypertension (PAH) and the acute lung injury (ALI) diseases. The common feature of these complications is the dysfunction of pulmonary microvascular endothelial cells (PMVECs). Fasudil, the only Rho kinase (ROCK) inhibitor used in clinic, has been proved to be the most promising new drug for the treatment of PAH, with some anti-inflammatory activity. Therefore, in the present study, the effect of fasudil on lipopolysaccharide (LPS)-induced inflammatory injury in rat PMVECs was investigated. METHODS: LPS was used to make inflammatory injury model of rat PMVECs. Thereafter, the mRNA and protein expression of pro-inflammatory factors was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) assay respectively. Intracellular reactive oxygen species (ROS) levels were measured by the confocal laser scanning system. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the content of malondialdehyde (MDA) were determined by using commercial kits according to the manufacturer's instructions. Western blot assay was used to detect the protein expression of nuclear factor kappa B (NF-κB) p65. RESULTS: Fasudil effectively prevented inflammatory injury induced by LPS, which is manifested by the decrease of pro-inflammatory cytokines interleukin-6 (IL-6) and monocyte chenotactic protein-1 (MCP-1). Meanwhile, fasudil dramatically reduced the levels of ROS and MDA, and also elevated the activities of SOD and GSH-Px. Furthermore, the nuclear translocation of NF-κB p65 induced by LPS was also suppressed by fasudil. Additionally, the ROS scavengers N-Acetylcysteine (N-Ace) was also found to inhibit the nuclear translocation of NF-κB and the mRNA expression of IL-6 and MCP-1 induced by LPS, which suggested that ROS was essential for the nuclear translocation of NF-κB. CONCLUSIONS: The present study revealed that fasudil reduced the expression of inflammatory factors, alleviated the inflammatory and oxidative damage induced by LPS in rat PMVECs via ROS-NF-κB signaling pathway.


Assuntos
Lipopolissacarídeos , NF-kappa B , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Animais , Células Endoteliais , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...